Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Joy L. Morgan, Brian H. Robinson and Jim Simpson*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail:
jsimpson@alkali.otago.ac.nz

Key indicators

Single-crystal X-ray study
$T=168 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.046$
$w R$ factor $=0.114$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

cis-[1,3-Bis(diphenylphosphino)propane]dibromoplatinum(II)

In the title compound, $\left[\mathrm{PtBr}_{2}\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right]$, the molecule adopts a distorted square-planar metal coordination, with the sixmembered metallocyclic ring in a twist-boat conformation.

Received 13 August 2002
Accepted 28 August 2002
Online 6 September 2002

Comment

The title compound, cis-[$\left.\mathrm{PtBr}_{2}(\mathrm{dppp})_{2}\right]$, (I), [dppp is 1,3-bis(diphenylphosphino)propane] was prepared, unexpectedly, from the reaction between the corresponding trifluoromethylsulfonate complex cis- $\left[\mathrm{Pt}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}(\mathrm{dppp})\right]$ and $\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{DAAD})_{2} \mathrm{Br}$ (DAAD is 2,6-diazaanthracene-9,10dione; Morgan et al., 2002). The molecular structure of cis[PtBr_{2} (dppp)] has the Pt atom in a slightly distorted squareplanar environment (Fig. 1). The two bromo ligands are in a cis configuration, imposed by the chelating dppp ligand. This is similar to the structures found for the chloro analogue cis$\left[\mathrm{PtCl}_{2}\right.$ (dppp)], (II) (Robertson \& Wickramasinghe, 1987), and the isomorphous palladium complex cis-[$\left.\mathrm{PdCl}_{2}(\mathrm{dppp})\right]$, (III) (Steffen \& Palenik, 1976).

(I)

Distortion in the square-planar Pt coordination sphere is signalled by angles about Pt ranging from 88.12 (4) to 91.95 (6) ${ }^{\circ}$ (Table 1). The r.m.s. deviation from the $\mathrm{Br}_{2} \mathrm{PtP}_{2}$ plane is $0.089 \AA$, with P 2 showing the largest deviation of 0.1133 (8) \AA. The angle between the PtP_{2} and PtBr_{2} planes is 8.01 (5) ${ }^{\circ}$. Similar distortions were found in (II) (Robertson \& Wickramasinghe, 1987) and have been attributed to steric strain within the chelating ligand (Steffen \& Palenik, 1976). This is further indicated by the significant deviations from tetrahedral angles observed in the alkyl chain of the dppp moiety. Torsion angles around the six-membered $\mathrm{Pt}-\mathrm{P}-\mathrm{C}-$ $\mathrm{C}-\mathrm{C}-\mathrm{P}$ chelate ring are consistent with a twist-boat conformation.

Relatively few structures of square-planar $\mathrm{Pt}^{\mathrm{II}}$ complexes with a $\mathrm{PtBr}_{2} \mathrm{P}_{2}$ ligand set have been reported. The data suggest that $\mathrm{Pt}-\mathrm{Br}$ bond lengths trans to the P atoms of bidentate phosphine ligands are generally longer than those in cisPtBr_{2} (monodentate phosphine) ${ }_{2}$ structures (Sembiring et al., 1999; Bhattacharyya et al., 1996) or in trans-[$\mathrm{PtBr}_{2} \mathrm{P}_{2}$] complexes (Messmer \& Amma, 1966; Cameron et al., 1990).

Figure 1
Perspective drawing of the title molecule, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles with arbitrary radii.

The $\mathrm{Pt}-\mathrm{Br}$ and $\mathrm{Pt}-\mathrm{P}$ bond lengths observed for (I) are within the expected ranges (Orpen et al., 1989). Furthermore, the $\mathrm{Pt}-\mathrm{P}$ distances are identical within experimental error, while the $\mathrm{Pt}-\mathrm{Br}$ distances differ [2.4951 (9) and 2.4855 (10) Å], mirroring the bond-length variations observed in (II) (Robertson \& Wickramasinghe, 1987) and (III) (Steffen \& Palenik, 1976). The $\mathrm{Pt}-\mathrm{Br}$ distances observed for (I) are also similar to those found for the previously reported cisPtBr_{2} (bidentate phosphine) structures (Wilson et al., 1994; Sevillano et al., 2000).

Molecules of (I) are reasonably well separated in the unit cell, with the shortest intermolecular contact not involving H atoms being for $\mathrm{C} 6 \cdots \mathrm{C} 24^{\mathrm{i}}$, of 3.4765 (9) \AA [symmetry code: (i) $x, y-1, z]$. The shortest contact involving the Br atoms is $\mathrm{H} 8 \cdots \mathrm{Br} 2^{\mathrm{ii}}\left[\mathrm{H} 8 \cdots \mathrm{Br} 2^{\mathrm{ii}} 2.875\right.$ (1), C8 $\cdots \mathrm{Br} 23.770$ (1) \AA and $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Br} 2157.5(2)^{\circ}$; symmetry code: (ii) $\left.x+1, y-1, z\right]$.

Experimental

$\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{DAAD})_{2} \mathrm{Br} \quad(115 \mathrm{mg}, \quad 0.15 \mathrm{mmol})$ and cis$\left[\mathrm{Pt}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}(\mathrm{dppp})\right](135 \mathrm{mg}, 0.15 \mathrm{mmol})$ were dissolved in dichloromethane (30 ml). The solution was stirred for 20 h at ambient temperature. The orange precipitate was filtered off and washed with dichloromethane, hexane, diethyl ether and ethyl acetate. Crystallization was achieved in d_{6}-DMSO over a period of months at ambient temperature.

Crystal data

$\left[\mathrm{PtBr}_{2}\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{P}_{2}\right)\right]$	$Z=2$
$M_{r}=767.33$	$D_{x}=1.994 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.709(2) \AA$	Cell parameters from 5652
$b=10.760(3) \AA$	reflections
$c=14.429(4) \AA$	$\theta=4.9-52.7^{\circ}$
$\alpha=88.272(3)^{\circ}$	$\mu=8.76 \mathrm{~mm}^{-1}$
$\beta=80.296(4)^{\circ}$	$T=168(2) \mathrm{K}$
$\gamma=73.540(3)^{\circ}$	Block, pale brown
$V=1278.0(6) \AA^{\circ}$	$0.51 \times 0.33 \times 0.30 \mathrm{~mm}$

Data collection

Siemens SMART diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.046, T_{\text {max }}=0.072$
15666 measured reflections
5118 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0571 P)^{2}\right. \\
&+9.6036 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.007 \\
& \Delta \rho_{\max }=2.38 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-4.26 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{Pt} 1$	$2.4951(9)$	$\mathrm{P} 1-\mathrm{C} 1$	$1.850(8)$
$\mathrm{Br} 2-\mathrm{Pt} 1$	$2.4855(10)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.530(12)$
$\mathrm{Pt} 1-\mathrm{P} 2$	$2.2384(19)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.544(12)$
$\mathrm{Pt} 1-\mathrm{P} 1$	$2.2394(19)$	$\mathrm{C} 3-\mathrm{P} 2$	$1.850(8)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{P} 1$	$91.67(7)$	$\mathrm{Br} 2-\mathrm{Pt} 1-\mathrm{Br} 1$	$88.12(4)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{Br} 2$	$91.95(6)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Pt} 1$	$115.4(3)$
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{Br} 2$	$171.34(5)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$	$111.1(6)$
$\mathrm{P} 2-\mathrm{Pt} 1-\mathrm{Br} 1$	$178.72(5)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$116.8(7)$
$\mathrm{P} 1-\mathrm{Pt} 1-\mathrm{Br} 1$	$88.45(6)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{P} 2$	$117.0(6)$

The final difference Fourier map revealed large residual density peaks around the Pt atom. Inspection of the absorption correction data showed a significant decrease in $R_{\text {int }}$ (from 0.097 to 0.033) following the correction. It is possible, however, that selection of a smaller crystal and/or application of numerical absorption corrections may have resulted in better residual density values. All H atoms were included in calculated positions using a riding model, with $\mathrm{Csp}{ }^{2}-\mathrm{H}$ and $\mathrm{Csp}{ }^{3}-\mathrm{H}$ bond distances of 0.95 and $0.99 \AA$, respectively, and $U_{\text {iso }}$ values equal to $1.2 U_{\text {eq }}$ of the carrier C atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997) and TITAN2000 (Hunter \& Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Dr Jan Wikaira and Professor Ward T. Robinson (University of Canterbury) for data collection.

References

Bhattacharyya, P., Slawin, A. M. Z., Smith, M. B. \& Woollins, J. D. (1996). Inorg. Chem. 35, 3675-3682.
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cameron, T. S., Clark, H. C., Linden, A. \& Nicholas, A. M. (1990). Polyhedron, 9, 1683-1688.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Hunter, K. A. \& Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Messmer, G. G. \& Amma, E. L. (1966). Inorg. Chem. 5, 1775-1781.
Morgan, J. L., Flood, A. H., Gordon, K. C., Kjaergaard, H. G., Robinson, B. H., Simpson, J., Rieger P. H. \& Rieger, A. L. (2002). In preparation.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

metal-organic papers

Robertson, G. B. \& Wickramasinghe, W. A. (1987). Acta Cryst. C43, 1694 1697.

Sembiring, S. B., Colbran, S. B \& Craig, D. C. (1999). J. Chem. Soc. Dalton Trans. pp. 1543-1554.
Sevillano, P., Habtemariam, A., Seijo, M. I. G., Castineiras, A., Parsons, S., Garcia, M. E. \& Sadler, P. J. (2000). Aust. J. Chem. 53, 635-644.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Steffen, W. \& Palenik, G. J. (1976). Inorg. Chem. 15, 2432-2439.
Wilson, W. L., Rahn, J. A., Alcock, N. W., Fischer, J., Frederick, J. H. \& Nelson, J. H. (1994). Inorg. Chem. 33, 109-117.

