metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Joy L. Morgan, Brian H. Robinson and Jim Simpson*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Key indicators

Single-crystal X-ray study T = 168 KMean $\sigma(C-C) = 0.014 \text{ Å}$ R factor = 0.046 wR factor = 0.114 Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

cis-[1,3-Bis(diphenylphosphino)propane]dibromoplatinum(II)

In the title compound, $[PtBr_2(C_{27}H_{26}P_2)]$, the molecule adopts a distorted square-planar metal coordination, with the six-membered metallocyclic ring in a twist-boat conformation.

Received 13 August 2002 Accepted 28 August 2002 Online 6 September 2002

Comment

The title compound, cis-[PtBr₂(dppp)₂], (I), [dppp is 1,3-bis-(diphenylphosphino)propane] was prepared, unexpectedly, from the reaction between the corresponding trifluoromethylsulfonate complex cis-[Pt(CF₃SO₃)₂(dppp)] and Re(CO)₃(DAAD)₂Br (DAAD is 2,6-diazaanthracene-9,10dione; Morgan *et al.*, 2002). The molecular structure of cis-[PtBr₂(dppp)] has the Pt atom in a slightly distorted squareplanar environment (Fig. 1). The two bromo ligands are in a cis configuration, imposed by the chelating dppp ligand. This is similar to the structures found for the chloro analogue cis-[PtCl₂(dppp)], (II) (Robertson & Wickramasinghe, 1987), and the isomorphous palladium complex cis-[PdCl₂(dppp)], (III) (Steffen & Palenik, 1976).

Distortion in the square-planar Pt coordination sphere is signalled by angles about Pt ranging from 88.12 (4) to 91.95 (6)° (Table 1). The r.m.s. deviation from the Br₂PtP₂ plane is 0.089 Å, with P2 showing the largest deviation of 0.1133 (8) Å. The angle between the PtP₂ and PtBr₂ planes is 8.01 (5)°. Similar distortions were found in (II) (Robertson & Wickramasinghe, 1987) and have been attributed to steric strain within the chelating ligand (Steffen & Palenik, 1976). This is further indicated by the significant deviations from tetrahedral angles observed in the alkyl chain of the dppp moiety. Torsion angles around the six-membered Pt-P-C-C-C-P chelate ring are consistent with a twist-boat conformation.

Relatively few structures of square-planar Pt^{II} complexes with a $PtBr_2P_2$ ligand set have been reported. The data suggest that Pt-Br bond lengths *trans* to the P atoms of bidentate phosphine ligands are generally longer than those in *cis*- $PtBr_2(monodentate phosphine)_2$ structures (Sembiring *et al.*, 1999; Bhattacharyya *et al.*, 1996) or in *trans*-[PtBr_2P_2] complexes (Messmer & Amma, 1966; Cameron *et al.*, 1990).

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Perspective drawing of the title molecule, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles with arbitrary radii.

The Pt-Br and Pt-P bond lengths observed for (I) are within the expected ranges (Orpen et al., 1989). Furthermore, the Pt-P distances are identical within experimental error, while the Pt-Br distances differ [2.4951 (9) and 2.4855 (10) Å], mirroring the bond-length variations observed in (II) (Robertson & Wickramasinghe, 1987) and (III) (Steffen & Palenik, 1976). The Pt-Br distances observed for (I) are also similar to those found for the previously reported cis-PtBr₂(bidentate phosphine) structures (Wilson et al., 1994; Sevillano et al., 2000).

Molecules of (I) are reasonably well separated in the unit cell, with the shortest intermolecular contact not involving H atoms being for $C6 \cdot \cdot \cdot C24^{i}$, of 3.4765 (9) Å [symmetry code: (i) x, y - 1, z]. The shortest contact involving the Br atoms is $H8 \cdots Br2^{ii}$ [$H8 \cdots Br2^{ii}$ 2.875 (1), $C8 \cdots Br2$ 3.770 (1) Å and C8-H8···Br2 157.5 (2)°; symmetry code: (ii) x + 1, y - 1, z].

Experimental

Re(CO)₃(DAAD)₂Br (115 mg, 0.15 mmol) cisand [Pt(CF₃SO₃)₂(dppp)] (135 mg, 0.15 mmol) were dissolved in dichloromethane (30 ml). The solution was stirred for 20 h at ambient temperature. The orange precipitate was filtered off and washed with dichloromethane, hexane, diethyl ether and ethyl acetate. Crystallization was achieved in d_6 -DMSO over a period of months at ambient temperature.

Crystal data

$[PtBr_2(C_{27}H_{26}P_2)]$	Z = 2	
$M_r = 767.33$	$D_x = 1.994 \text{ Mg m}^{-3}$	
Triclinic, P1	Mo $K\alpha$ radiation	
a = 8.709 (2) Å	Cell parameters from 5652	
b = 10.760 (3) Å	reflections	
c = 14.429 (4) Å	$ heta = 4.9 - 52.7^{\circ}$	
$\alpha = 88.272 \ (3)^{\circ}$	$\mu = 8.76 \text{ mm}^{-1}$	
$\beta = 80.296 \ (4)^{\circ}$	T = 168 (2) K	
$\gamma = 73.540 \ (3)^{\circ}$	Block, pale brown	
V = 1278.0 (6) Å ³	$0.51 \times 0.33 \times 0.30 \text{ mm}$	

Data collection

Siemens SMART diffractometer	4792 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Bruker, 1997)	$h = -10 \rightarrow 10$
$T_{\min} = 0.046, T_{\max} = 0.072$	$k = -10 \rightarrow 13$
15 666 measured reflections	$l = -17 \rightarrow 17$
5118 independent reflections	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0571P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 9.6036P]
$wR(F^2) = 0.114$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.23	$(\Delta/\sigma)_{\rm max} = 0.007$
5118 reflections	$\Delta \rho_{\rm max} = 2.38 \ {\rm e} \ {\rm \AA}^{-3}$
289 parameters	$\Delta \rho_{\rm min} = -4.26 \text{ e} \text{ Å}^{-3}$

H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Br1-Pt1	2.4951 (9)	P1-C1	1.850 (8)
Br2-Pt1	2.4855 (10)	C1-C2	1.530 (12)
Pt1-P2	2.2384 (19)	C2-C3	1.544 (12)
Pt1-P1	2.2394 (19)	C3-P2	1.850 (8)
P2-Pt1-P1	91.67 (7)	Br2-Pt1-Br1	88.12 (4)
P2-Pt1-Br2	91.95 (6)	C1-P1-Pt1	115.4 (3)
P1-Pt1-Br2	171.34 (5)	C2-C1-P1	111.1 (6)
P2-Pt1-Br1	178.72 (5)	C1-C2-C3	116.8 (7)
P1-Pt1-Br1	88.45 (6)	C2-C3-P2	117.0 (6)

The final difference Fourier map revealed large residual density peaks around the Pt atom. Inspection of the absorption correction data showed a significant decrease in R_{int} (from 0.097 to 0.033) following the correction. It is possible, however, that selection of a smaller crystal and/or application of numerical absorption corrections may have resulted in better residual density values. All H atoms were included in calculated positions using a riding model, with Csp²-H and Csp^3 -H bond distances of 0.95 and 0.99 Å, respectively, and U_{iso} values equal to $1.2U_{eq}$ of the carrier C atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Dr Jan Wikaira and Professor Ward T. Robinson (University of Canterbury) for data collection.

References

- Bhattacharyya, P., Slawin, A. M. Z., Smith, M. B. & Woollins, J. D. (1996). Inorg. Chem. 35, 3675-3682.
- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cameron, T. S., Clark, H. C., Linden, A. & Nicholas, A. M. (1990). Polyhedron, 9, 1683-1688.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Messmer, G. G. & Amma, E. L. (1966). Inorg. Chem. 5, 1775-1781.
- Morgan, J. L., Flood, A. H., Gordon, K. C., Kjaergaard, H. G., Robinson, B. H., Simpson, J., Rieger P. H. & Rieger, A. L. (2002). In preparation.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

- Robertson, G. B. & Wickramasinghe, W. A. (1987). Acta Cryst. C43, 1694-1697.
- Sembiring, S. B., Colbran, S. B & Craig, D. C. (1999). J. Chem. Soc. Dalton Trans. pp. 1543-1554.
- Sevillano, P., Habtemariam, A., Seijo, M. I. G., Castineiras, A., Parsons, S., Garcia, M. E. & Sadler, P. J. (2000). Aust. J. Chem. 53, 635-644.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Steffen, W. & Palenik, G. J. (1976). *Inorg. Chem.* **15**, 2432–2439. Wilson, W. L., Rahn, J. A., Alcock, N. W., Fischer, J., Frederick, J. H. & Nelson, J. H. (1994). Inorg. Chem. 33, 109-117.